본문 바로가기
## 오래된 게시글 (미관리) ##/Python (Linux)

20. Python - 그리드 탐색을 이용하여 준비 단계의 옵션 자동 탐색하기

by #Glacier 2018. 11. 28.
반응형

이번엔 그리드 탐색을 이용한 준비 단계의 옵션을 자동 탐색하는 방법을 알아보겠습니다.


param_grid = [

('preparation__num_pipeline__imputer__strategy' : ['mean', 'median', 'most_frequent'],

'feature_selection__k' : list(range(1,len(feature_importances) + 1 ))}

]


grid_search_prep=GridSearchCV(prepare_select_and_predict_pipeline,param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2, n_jobs=1)


grid_search_prep.fit(housing, housing_labels)



이렇게 코드를 작성해주시고 한참을 기다리시면 됩니다..


Fitting 5 folds for each of 48 candidates, totalling 240 fits
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean 
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean, total=  14.9s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean 
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   22.8s remaining:    0.0s
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean, total=  15.5s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean, total=  14.9s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean, total=  15.0s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=mean, total=  14.8s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median, total=  14.8s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median, total=  15.9s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median, total=  15.3s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median, total=  14.7s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=median, total=  15.2s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.0s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.6s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.8s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.5s
[CV] feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.4s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean, total=  14.8s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean, total=  15.0s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean, total=  15.3s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean, total=  15.0s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=mean, total=  16.0s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median, total=  16.4s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median, total=  16.9s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median, total=  16.9s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median, total=  17.2s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=median, total=  15.9s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.0s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.3s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.1s
[CV] feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=2, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.8s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean, total=  16.1s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean, total=  14.8s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean, total=  14.6s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean, total=  14.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=mean, total=  14.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median, total=  15.5s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median, total=  14.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median, total=  14.8s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median, total=  15.1s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=median, total=  14.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.9s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.7s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.8s
[CV] feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=3, preparation__num_pipeline__imputer__strategy=most_frequent, total=  15.8s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean, total=  15.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean, total=  15.3s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean, total=  15.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean, total=  15.7s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=mean, total=  15.3s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median, total=  15.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median, total=  15.3s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median, total=  15.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median, total=  15.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=median, total=  15.5s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.7s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.3s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.6s
[CV] feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=4, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean, total=  15.6s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean, total=  16.6s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean, total=  16.7s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean, total=  17.0s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=mean, total=  15.6s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median, total=  16.2s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median, total=  16.0s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median, total=  15.5s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median, total=  15.6s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=median, total=  15.4s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.3s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.3s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.6s
[CV] feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=5, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean, total=  15.7s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean, total=  16.5s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean, total=  16.0s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean, total=  16.5s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=mean, total=  18.0s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median, total=  18.3s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median, total=  19.3s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median, total=  19.2s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median, total=  17.9s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=median, total=  18.2s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.5s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.4s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.6s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.2s
[CV] feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=6, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.1s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean, total=  15.8s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean, total=  15.7s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean, total=  16.2s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean, total=  16.0s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=mean, total=  15.7s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median, total=  16.6s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median, total=  15.9s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median, total=  15.9s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median, total=  15.5s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=median, total=  15.6s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.3s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.6s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.1s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent, total=  16.6s
[CV] feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=7, preparation__num_pipeline__imputer__strategy=most_frequent, total=  17.2s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean, total=  17.8s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean, total=  17.2s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean, total=  19.0s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean, total=  18.2s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=mean, total=  19.3s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median, total=  18.4s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median, total=  17.4s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median, total=  18.6s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median, total=  18.8s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=median, total=  18.4s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent, total=  18.8s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent, total=  18.3s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent, total=  19.4s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent, total=  18.1s
[CV] feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=8, preparation__num_pipeline__imputer__strategy=most_frequent, total=  19.1s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean, total=  22.6s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean, total=  20.5s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean, total=  22.1s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean, total=  22.3s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=mean, total=  21.0s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median, total=  21.5s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median, total=  26.7s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median, total=  21.7s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median, total=  23.1s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=median, total=  23.0s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent, total=  23.4s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent, total=  22.7s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent, total=  22.5s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent, total=  21.8s
[CV] feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=9, preparation__num_pipeline__imputer__strategy=most_frequent, total=  23.0s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean, total=  23.2s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean, total=  24.5s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean, total=  28.6s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean, total=  26.0s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=mean, total=  24.8s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median, total=  23.6s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median, total=  27.0s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median, total=  25.2s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median, total=  25.4s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=median, total=  24.2s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent, total=  24.8s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent, total=  25.5s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent, total=  24.6s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent, total=  26.6s
[CV] feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=10, preparation__num_pipeline__imputer__strategy=most_frequent, total=  27.0s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean, total=  29.7s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean, total=  27.2s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean, total=  27.4s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean, total=  29.1s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=mean, total=  28.0s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median, total=  25.3s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median, total=  25.1s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median, total=  25.5s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median, total=  29.7s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=median, total=  28.8s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent, total=  31.3s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent, total=  26.6s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent, total=  27.2s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent, total=  28.8s
[CV] feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=11, preparation__num_pipeline__imputer__strategy=most_frequent, total=  33.4s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean, total=  30.5s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean, total=  30.4s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean, total=  31.7s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean, total=  30.8s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=mean, total=  31.8s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median, total=  29.3s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median, total=  29.4s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median, total=  31.3s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median, total=  30.1s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=median, total=  31.0s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent, total=  28.6s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent, total=  30.7s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent, total=  35.1s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent, total=  29.5s
[CV] feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=12, preparation__num_pipeline__imputer__strategy=most_frequent, total=  30.7s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean, total=  35.3s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean, total=  33.5s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean, total=  34.3s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean, total=  32.2s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=mean, total=  27.7s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median, total=  30.3s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median, total=  34.3s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median, total=  35.4s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median, total=  34.4s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=median, total=  31.4s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent, total=  30.4s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent, total=  34.5s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent, total=  35.6s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent, total=  35.0s
[CV] feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=13, preparation__num_pipeline__imputer__strategy=most_frequent, total=  31.7s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean, total=  28.6s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean, total=  32.9s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean, total=  33.1s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean, total=  33.5s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=mean, total=  31.5s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median, total=  33.4s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median, total=  34.7s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median, total=  33.7s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median, total=  34.0s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=median, total=  31.0s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent, total=  34.7s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent, total=  30.8s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent, total=  32.6s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent, total=  35.9s
[CV] feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=14, preparation__num_pipeline__imputer__strategy=most_frequent, total=  42.1s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean, total=  34.8s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean, total=  33.7s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean, total=  35.7s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean, total=  29.7s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=mean, total=  32.8s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median, total=  30.3s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median, total=  34.3s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median, total=  36.3s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median, total=  36.3s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=median, total=  35.7s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent, total=  38.5s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent, total=  38.8s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent, total=  39.1s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent, total=  33.5s
[CV] feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num_pipeline__imputer__strategy=most_frequent, total=  42.4s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean, total=  37.1s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean, total=  39.4s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean, total=  32.3s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean, total=  35.3s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=mean, total=  30.2s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median, total=  31.6s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median, total=  34.7s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median, total=  33.1s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median, total=  30.0s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=median, total=  33.7s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent, total=  32.1s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent, total=  35.6s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent, total=  33.6s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent, total=  33.8s
[CV] feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num_pipeline__imputer__strategy=most_frequent, total=  36.4s
[Parallel(n_jobs=1)]: Done 240 out of 240 | elapsed: 125.6min finished


무려 2시간;; 이 지난 후, grid_search_prep.best_params_로 최상의 Imputer 정책이 무엇인지 알아봅니다.



그 결과, 최적의 Strategy는 Most_frequent 최빈값이 나왔고, 

거의 모든 특성 (16개 특성 중 15개)이 유용하다는 결과를 얻을 수 있었습니다.

마지막 특성인 ISLAND는 잡음만이 추가될 뿐이라는 점을 알 수 있습니다.


 블로그 

출처


이 글의 상당 부분은  [핸즈온 머신러닝, 한빛미디어/오렐리앙 제롱/박해선] 서적을 참고하였습니다.


나머지는 부수적인 함수나 메서드에 대해 부족한 설명을 적어두었습니다.

학습용으로 포스팅 하는 것이기 때문에 복제보다는 머신러닝에 관심이 있다면 구매해보시길 추천합니다.


도움이 되셨다면 로그인 없이 가능한

아래 하트♥공감 버튼을 꾹 눌러주세요! 




반응형